

Blood 142 (2023) 2993-2994

The 65th ASH Annual Meeting Abstracts

POSTER ABSTRACTS

621.LYMPHOMAS: TRANSLATIONAL-MOLECULAR AND GENETIC

Integrative Genomic and Transcriptomic Analysis Reveals Targetable Vulnerabilities in Angioimmunoblastic T-Cell Lymphoma

Alyssa Bouska, PhD¹, Weiwei Zhang, PhD², Sunandini Sharma, MS², Harald Holte, MD PhD³, Ab Rauf Shah, PhD², Waseem Gul Lone, PhD², Luca Vincenzo Cappelli, MDPhD⁴, Danilo Fiore, PhD⁵, Qiang Gong, PhD³, Tayla Heavican-Foral, PhD², Jeffrey Cannatella, MD², Catalina Amador, MD³, Aiza Arif², Lynette Smith, PhD°, Soon Thye Lim, MBBS, MRCP¹0, Choon Kiat Ong, PhD¹¹, Andrew L. Feldman, MD¹², Ming-Qing Du, MB, PhD FRCPath¹³, Laurence de Leval, MD PhD¹⁴, Timothy C. Greiner, MS,MD², Kai Fu, MD PhD¹⁵, Gunhild Trøen, PhD¹⁶, Daniel Vodak¹७, Sigve Nakken, PhD¹³, Jan Delabie, MD PhD¹٩, David M. Weinstock, MD²0, Stefano A. Pileri, MDPhD²¹, Antonella Laginestra, PhD²², Kyeongjin Kim, PhD²³, Utpal Pajvani, MD PhD²⁴, Julie M. Vose, MD MBA²⁵, Dennis D Weisenburger, MD², Sandeep Dave, MD²⁶, Giorgio Inghirami, MD²², Wing C. Chan, MD³, Javeed Igbal, PhDMSc²

- ¹ Department of Pathology and Microbiology, University of Nebraska Medical Center, OMAHA, NE
- ²Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
- ³Department of Oncology, Oslo University Hospital, Oslo, NOR
- ⁴Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
- ⁵1. Department of Pathology and Laboratory Medicine, Weil Cornell Medical College, New York City, NY
- ⁶Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- ⁷ Department of Pathology, City of Hope National Medical Center, Duarte, CA
- ⁸University of Miami, Miami, FL
- ⁹Department of Biostatistics, UNMC, Omaha, NE
- ¹⁰ National Cancer Centre, Singapore, SGP
- ¹¹ Division of Medical Oncology, National Cancer Centre Singapore / Duke-NUS Medical School, Singapore, Singapore
- ¹²Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic, Rochester, MN
- ¹³ Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- ¹⁴ Hôpital Universitaire de Lausanne, Lausanne, Switzerland
- ¹⁵Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- ¹⁶Oslo University Hospital, Oslo, Norway
- ¹⁷Oslo University Hospital,, Oslo, Norway
- ¹⁸University of Oslo, Oslo, Norway
- ¹⁹University of Toronto, Toronto, CAN
- ²⁰ Dana Farber Cancer Institute, Boston, MA
- ²¹ Division of Hematopathology, Istituto Europeo di Oncologia, Milano, Italy
- ²²European Institute of Oncology IRCCS,, Milan, Italy
- ²³Inha University, Incheon, KOR
- ²⁴Columbia University, New York, NY
- ²⁵Univeristy of Nebraska Medical Center, Omaha, NE
- ²⁶ Duke University Medical Center, Durham, NC
- ²⁷Weill Cornell Medicine, New York, NY

Follicular helper T-cell lymphoma of the angioimmunoblastic type (AITL) is associated with dismal prognosis. We performed functional genomic approaches including whole-exome sequencing (WES; n=119), transcriptomic (n=78) and methylation (n=40) analysis. We identified recurrent mutations in known epigenetic drivers (*TET2*, *DNMT3A*, *IDH2* R172), and also identified novel ones (TET3, KMT2D). Somatic mutation of all three epigenetic drivers (*TET2*, *IDH2*, and *DNMT3A*) was associated

POSTER ABSTRACTS Session 621

with poor prognosis (p<.001). Mutations in genes regulating T-cell receptor (TCR) signaling (CD28 VAV1, FYN, PLCG1) or activation (RHOA G17V), and regulators of the PI3K pathway (PIK(3)C members, PTEN, PHLPP-1/-2) were also found. Genomewide DNA-methylation analysis integrated with mRNA expression profiling also revealed epigenetic alterations in genes regulating TCR-RHOA/B/C or PI3K-signaling. TET2 loss was noted in 85% AITLs and was significantly associated with RHOA G17V, CD28 and IDH2 R172 mutations. AITLs lacking RHOA G17V tended to have mutations regulating the JAK-STAT pathway (JAK2, JAK3, STAT1, STAT3, SOCS1). RNA-seg analysis identified fusion transcripts in genes regulating TCR activation (8%), revealed a restricted TCR repertoire in the majority of cases (a=87%, b=72%), and showed the presence of Epstein-Barr virus transcriptome (73%). GEP demonstrated association of B-cells in the tumor-milieu with better prognosis (p=.006), while dendritic cells were associated with worse prognosis (p=.001), which was further validated by immunohistochemistry using CD20, CD68, and CD163 antibodies. RNA-seq and corresponding WES analysis of 12 AITL patient-derived-xenografts (PDX) showed that bi-allelic TET2 mutations, DNMT3A mutations or sub-clonal mutations (PLCG1 PHLPP2) werepropagated in sequential passages. Gene signatures related to T FH (follicular helper) and T CM (central memory) were also well-maintained in secondary passages in PDX models. Gene signatures of late PDX passages (3 rd-5 th) were enriched with genes related to proliferation and metabolic reprogramming, and in an independent cohort of AITLs, high expression of T3/T5 related signatures was associated with worse outcome (p=0.02/p=0.009). Low mRNA expression of PHLPP2 predicted poor prognosis (p=.03) and engineered PHLPP2 loss showed enhanced PI(3)K activation and FOXO1 inactivation in CD4+ T-cells in-vitro. Thus, we defined the genomic landscape for AITL, which is largely characterized by epigenetic alterations, TCR signaling and PI3K/AKT dysregulation, which may be amenable for therapeutic targeting.

Disclosures Holte: Nordic Nanovector: Other: Safety Committee; Pierre Fabre: Other: Advisory Board; Genmab: Other: DMC Committee; Incyte: Other: Advisory Board, Review Committee. **de Leval:** Lunaphore: Consultancy; Novartis: Consultancy; Bio Ascend: Consultancy; Bayer: Consultancy; Abb Vie: Consultancy. **Pileri:** CELGENE: Other: Advisory board; ROCHE: Speakers Bureau; NANOSTRING: Other: Advisory Board; Stemline: Speakers Bureau; Diatech Pharmacogenetics: Consultancy; Beigene: Research Funding, Speakers Bureau; Eli Lilly: Speakers Bureau. **Vose:** Eli Lilly and Company; Epizyme, Kite, Loxo, Novartis: Research Funding; AbbVie, MEI Pharma: Consultancy. **Dave:** Data Driven Bioscience: Current equity holder in private company.

https://doi.org/10.1182/blood-2023-186530